Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Yi (Ed.)High-performance computing (HPC) is widely used in higher education for modeling, simulation, and AI applications. A critical piece of infrastructure with which to secure funding, attract and retain faculty, and teach students, supercomputers come with high capital and operating costs that must be considered against other competing priorities. This study applies the concepts of the production function model from economics with two thrusts: (1) to evaluate if previous research on building a model for quantifying the value of investment in research computing is generalizable to a wider set of universities, and (2) to define a model with which to capacity plan HPC investment, based on institutional production—inverting the production function. We show that the production function model does appear to generalize, showing positive institutional returns from the investment in computing resources and staff. We do, however, find that the relative relationships between model inputs and outputs vary across institutions, which can often be attributed to understandable institution-specific factors.more » « lessFree, publicly-accessible full text available August 21, 2026
-
Yoshizawa, Go (Ed.)PurposeThe purpose of this article is to investigate particular aspects of the STEM job market in the US. In particular, we ask: could the possession of high performance computing (HPC) skills enhance the chances of a person getting a job and/or increase starting salaries for people receiving an undergraduate or graduate degree and entering the technical workforce (rather than academia)? We also estimate the value to the US economy of practical experience offered to US students through training about HPC and the opportunity to use HPC systems funded by the National Science Foundation (NSF) and accessible nationally. MethodsInterviews and surveys of employers of graduates in STEM fields were used to gauge demand for STEM graduates with practical HPC experience and the salary increase that can be associated with the possession of such skills. We used data from the XSEDE project to determine how many undergraduate and graduate students it enabled to acquire practical proficiency with HPC. ResultsPeople with such skills who had completed an undergraduate or graduate degree received an initial median hiring salary of approximately 7%–15% more than those with the same degrees who did not possess such skills. XSEDE added approximately $10 million or more per year to the US economy through the practical educational opportunities it offered. DiscussionPractical hands-on experience provided by the US federal government, as well as many universities and colleges in the US, holds value for students as they enter the workforce. ConclusionPractical training in HPC during the course of undergraduate and graduate programs has the potential to produce positive individual labor market outcomes (i.e., salary boosts, signing bonuses) as well as to help address the shortage of STEM workers in the private sector of the US.more » « lessFree, publicly-accessible full text available January 22, 2026
-
null (Ed.)Jetstream2 will be a category I production cloud resource that is part of the National Science Foundation’s Innovative HPC Program. The project’s aim is to accelerate science and engineering by providing “on-demand” programmable infrastructure built around a core system at Indiana University and four regional sites. Jetstream2 is an evolution of the Jetstream platform, which functions primarily as an Infrastructure-as-a-Service cloud. The lessons learned in cloud architecture, distributed storage, and container orchestration have inspired changes in both hardware and software for Jetstream2. These lessons have wide implications as institutions converge HPC and cloud technology while building on prior work when deploying their own cloud environments. Jetstream2’s next-generation hardware, robust open-source software, and enhanced virtualization will provide a significant platform to further cloud adoption within the US research and education communities.more » « less
An official website of the United States government
